From discrete to continuous Wardrop equilibria
نویسندگان
چکیده
The notion of Wardrop equilibrium in congested networks has been very popular in congested traffic modelling since its introduction in the early 50’s, it is also well-known that Wardrop equilibria may be obtained by some convex minimization problem. In this paper, in the framework of Γ-convergence theory, we analyze what happens when a cartesian network becomes very dense. The continuous model we obtain this way is very similar to the continuous model of optimal transport with congestion of Carlier, Jimenez and Santambrogio [6] except that it keeps track of the anisotropy of the network.
منابع مشابه
Wardrop Equilibria and Price of Stability for Bottleneck Games with Splittable Traffic
We look at the scenario of having to route a continuous rate of traffic from a source node to a sink node in a network, where the objective is to maximize throughput. This is of interest, e.g., for providers of streaming content in communication networks. The overall path latency, which was relevant in other non-cooperative network routing games such as the classic Wardrop model, is of lesser c...
متن کاملm at h . O C / 0 61 27 19 v 1 22 D ec 2 00 6 Optimal transportation with traffic congestion and Wardrop equilibria
In the classical Monge-Kantorovich problem, the transportation cost only depends on the amount of mass sent from sources to destinations and not on the paths followed by this mass. Thus, it does not allow for congestion effects. Using the notion of traffic intensity, we propose a variant taking into account congestion. This leads to an optimization problem posed on a set of probability measures...
متن کاملCooperative dynamics and Wardrop equilibria
A simple dynamics capturing user behavior in a network is shown to lead to equilibria that can be viewed as approximate, generalized Wardrop equilibria.
متن کاملDistributed Learning of Wardrop Equilibria
We consider the problem of learning equilibria in a well known game theoretic traffic model due to Wardrop. We consider a distributed learning algorithm that we prove to converge to equilibria. The proof of convergence is based on a differential equation governing the global macroscopic evolution of the system, inferred from the local microscopic evolutions of agents. We prove that the differen...
متن کاملIntegrated Project Member of the FET Proactive Initiative Complex Systems DELIS-TR-0052 Nash Equilibria in Discrete Routing Games with Convex Latency Functions
We study Nash equilibria in a discrete routing game that combines features of the two most famous models for non-cooperative routing, the KP model [16] and the Wardrop model [27]. In our model, users share parallel links. A user strategy can be any probability distribution over the set of links. Each user tries to minimize its expected latency, where the latency on a link is described by an arb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NHM
دوره 7 شماره
صفحات -
تاریخ انتشار 2012